[SQA] 1. Find the size of the angle a° that the line joining the points A(0, -1) and B($3\sqrt{3}$, 2) makes with the positive direction of the *x*-axis.

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
	3	С	NC	G2	30	2000 P1 Q3
• ¹ • ² • ³	 •¹ ss: know how to find gradient or equ. •² pd: process •³ ic: interpret exact value 				• ¹ $\frac{2-(-1)}{3\sqrt{3}-0}$ • ² $\tan a = \text{gradient}$ stated of • ³ $a = 30$	or implied by

[SQA] 2. The line AB makes an angle of $\frac{\pi}{3}$ radians with the y-axis, as shown in the diagram. Find the exact value of the gradient of AB.

2

Part	Marks	Level	Calc.	Content	Answer	U1 OC1		
	2	A/B	CN	G2		1999 P1 Q7		
• ¹	•1 "correct angle" = $\frac{\pi}{2} - \frac{\pi}{3}$ •2 $\frac{1}{\sqrt{3}}$							

[SQA] 3. The diagram shows a kite OABC.
 A is the point (4,0) and B is the point (4,3).
 Calculate the gradient of OC correct to two decimal places.

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
	3	С	CR	G2		1992 P1 Q13

•1 strat: i.e. try to evaluate CÔA

•² $A\hat{O}B = 36.9^{\circ}$

- •³ $\tan 73.7^\circ = 3.428$
- $\cdot^4 \times \cos x$

[SQA] 4. The lines y = 2x + 4 and x + y = 13 make angles of a° and b° with the positive direction of the x-axis, as shown in the diagram.

- (a) Find the values of a and b.
- (b) Hence find the acute angle between the two given lines.

3

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
<i>(a)</i>	4	С	CR	G2		1993 P1 Q10
<i>(b)</i>	1	С	CR	CGD		

• $\tan a^\circ = 2$

• $a = 63.4^{\circ}$

•
$$\tan(180-b)=1$$

- b = 135
- 180 a (180 b) or equiv. to b a

[SQA] 5. Calculate, to the nearest degree, the angle between the *x*-axis and the tangent to the curve with equation $y = x^3 - 4x - 5$ at the point where x = 2.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
	4	С	NC	C4, G2		1989 P1 Q13
	$\frac{dy}{dx} = 3x^2 - \frac{dy}{dx} = 3x^2 - \frac{dy}{dx} = 8$ $\tan \theta = 8$	4				

4

[SQA] 6. The parabola $y = ax^2 + bx + c$ crosses the *y*-axis at (0, 3) and has two tangents drawn, as shown in the diagram.

The tangent at x = -1 makes an angle of 45° with the positive direction of the *x*-axis and the tangent at x = 2 makes an angle of 135° with the positive direction of the *x*-axis.

Find the values of *a*, *b* and *c*.

(8)

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	2	С	NC	G2, A2		1995 P2 Q7
	6	A/B	NC	G2, A2		
1 2 3 4 5 6 7 8	$c = 3$ $2ax + b$ $m = \tan 4$ $-2a + b =$ $m = \tan 1$ $4a + b = -$ method f $a = -\frac{1}{3}$	$5^{\circ} = 1$ $35^{\circ} = -1$ 1 for solvin $b = \frac{1}{3}$	g pr. of e	xqu		

[END OF QUESTIONS]